Lecture 1: Nakajima Quiver Varieties

نویسنده

  • IVAN LOSEV
چکیده

Recall that an algebraic group G is called (linearly) reductive if any its rational (i.e., algebraic) representation is completely reducible. The finite groups, the group GLn and the products GLn1 × . . .GLnk are reductive. Below G denotes a reductive algebraic group and X is an affine algebraic variety equipped with an (algebraic) action of G. Results explained below in this section can be found in [PV].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kac conjecture from Nakajima quiver varieties

We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the Weyl-Kac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a a certain weight in the corresponding Kac-Moody algebra, whic...

متن کامل

Kac’s conjecture from Nakajima quiver varieties

We prove a generating function formula for the Betti numbers of Nakajima quiver varieties. We prove that it is a q-deformation of the WeylKac character formula. In particular this implies that the constant term of the polynomial counting the number of absolutely indecomposable representations of a quiver equals the multiplicity of a certain weight in the corresponding Kac-Moody algebra, which w...

متن کامل

0 Quiver Varieties of Type A

We prove a conjecture of Nakajima describing the relation between the geometry of quiver varieties of type A and the geometry of the partial flags varieties and of the nilpotent variety. The kind of quiver varieties we are interested in, have been introduced by Nakajima as a generalization of the description of the moduli space of anti-self-dual connections on ALE spaces constructed by Kronehei...

متن کامل

Quiver Varieties of Type A

We prove a conjecture of Nakajima describing the relation between the geometry of quiver varieties of type A and the geometry of partial flags varieties and nilpotent variety. The kind of quiver varieties we are interested in, have been introduced by Nakajima as a generalization of the description of the moduli space of anti-self-dual connections on ALE spaces constructed by Kroneheimer and Nak...

متن کامل

Reflection Functors for Quiver Varieties and Weyl Group Actions

We define a Weyl group action on quiver varieties using reflection functors, which resemble ones introduced by Bernstein-Gelfand-Ponomarev [1]. As an application, we define Weyl group representations of homology groups of quiver varieties. They are analogues of Slodowy’s construction of Springer representations of the Weyl group.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016